
In order to correctly use mathematical simulation
models, sensitivity analysis is needed to identify
sources of simulation errors, key parameters, and
parameter precision required (Fontaine et al., 1992;

Larocque and Banton, 1994; Ferreira et al., 1995).
Sensitivity analysis may also be used to infer statistical
consequences due to parameter uncertainty and to find
programming errors (Gwo et al., 1996). A sensitivity
analysis is usually conducted by varying (perturbing)
model parameter values (Nearing et al., 1990), adding or
removing model parameters (Ma and Selim, 1997), or
running the model under dynamic conditions (Ma et al.,
1998). Results from a sensitivity analysis may be site and
condition specific (Ferreira et al., 1995).

In most sensitivity analyses, model parameters are
allowed to vary around their base values independently
(Tiscareno-Lopez et al., 1993, 1994; Barnes and Young,

1994) or dependently (Silberbush and Barber, 1983). The
range of the perturbation may be a specific percentage
(Barnes and Young, 1994; Ferreira et al., 1995) or
determined from experimental measurements (Fontaine et
al., 1992; Gwo et al., 1996). The most common form of
sensitivity analysis is independent parameter perturbation
(IPP) in which parameters are varied individually by a
fixed percentage around a base value (Ferreira et al., 1995).
An example of this approach is first-order analysis (Haan
and Zhang, 1996), which is best applicable to linear
systems. More recent approaches vary multiple parameters
simultaneously based on underlying probability
distributions of the parameters, such as the traditional
Monte Carlo simulation (Shaffer et al., 1988; Tiscareno-
Lopez et al., 1993, 1994), Latin Hypercube Sampling
(Gwo et al., 1996; Ellerbroek et al., 1998), Plackett-
Burman screening design (Fontaine et al., 1992), and
Fourier amplitude sensitivity testing (Fontaine et al., 1992).
Model output responses to parameter perturbation may be
quantified by percentage change of selected output
variables (Barnes and Young, 1994; Ferreira et al., 1995),
relative change of output versus input (Nearing et al., 1990;
Larocque and Banton, 1994), sensitivity coefficients from
linear regression analysis (Fontaine et al., 1992; Tiscareno-
Lopez et al., 1993, 1994; Gwo et al., 1996), and graphic
response curves or probability distributions (Franti et al.,
1996; Haan and Zhang, 1996; Baffaut et al., 1997;
Ellerbroek et al., 1998). The overall model response may
be obtained by taking the average response of selected
output variables (Nearing et al., 1990).

In this study, the Latin Hypercube Sampling (LHS)
technique was used to perform a sensitivity analysis on the
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Root Zone Water Quality Model (RZWQM) (RZWQM
Development Team, 1998). LHS is a modified Monte Carlo
method that has been shown to be more efficient than
traditional Monte Carlo simulation in sampling parameters
with a given distribution (McKay et al., 1979; Gwo et al.,
1996). For example, suppose there are K input variables or
parameters, Xk, (k = 1, 2, . . . , K), and each Xk has a
distribution. To sample M vectors of import variables, each
distribution is divided into M intervals, each interval is
sampled with a probability of 1/M and a total of M values
are obtained for variable Xk (Xkj, j = 1, 2, . . . , XkM). To
produce vectors of the input variables, one of the values of
X1 is randomly selected and matched with a randomly
selected value of X2, and so on, through XK. This matching
procedure is repeated on the rest of sampled values of Xk
until all the values are exhausted. The resulting M vectors
of the K input variables may be used to study the
sensitivity of selected RZWQM (or other model) output
responses from multiple simulation runs.

The comparability of LHS results with traditional
Monte Carlo simulation results can be difficult to see in
practice. Certainly in the limit of a large number of
observations, there is a statistical equivalence between the
results of an LHS sensitivity analysis and those produced
by a representative Monte Carlo analysis. However, when
a smaller sample size is used (either for LHS or Monte
Carlo analysis), several factors can combine to obscure
that equivalence. For Monte Carlo, a small sample size
can allow unintended correlations to be introduced to the
sampled data set (the insufficient number of samples does
not allow randomness to reduce those correlations), or the
sample set may not cover the entire range of a distribution
(dependent on the particular random number sequence
that was generated). For LHS, a small sample size should
not cause unintended correlations or result in poor
distribution coverage. Rather, if the results of an LHS
analysis with few samples (say, 100) are compared with
the results of a Monte Carlo analysis with many samples
(say, 100,000), the statistical agreement between those
analyses may not be as good as expected. This is
particularly true when sampling one or more distributions
that have very long tails (e.g., normal or lognormal
variables with large standard deviations, among others),
and can be especially noteworthy when examining
statistics such as the mean or standard deviation
(as opposed to order statistics such as the median).
Furthermore, LHS can be more sensitive to the random
seed value than traditional Monte Carlo techniques. This
also can obscure the equivalence between the Monte
Carlo and LHS sensitivity results that might be expected.

RZWQM studies have been conducted previously for
macropore flow (Ahuja et al., 1993), pesticide transport
(Ma et al., 1996; Ellerbroek et al., 1998,), and tile drainage
(Singh and Kanwar, 1995a,b; Walker, 1996) model
components. A RZWQM sensitivity analysis for east-
central Illinois agricultural conditions was performed by
Walker et al. (2000) to identify model input parameters
with the greatest influence on simulated tile drain flow, tile
nitrate, and crop yield. A goal of this research was to avoid
duplicating prior RZWQM studies, therefore, three
preliminary steps were conducted before performing the
actual sensitivity analysis. First, model input variables that
vary in a predetermined manner were chosen. Based on

previous experience (Ahuja et al., 1993; Walker, 1996;
Ellerbroek et al., 1998; Ma et al., 1998), four sets of model
input parameter groups were identified: (1) saturated
hydraulic conductivity; (2) organic matter/nitrogen (N)
cycling parameters; (3) plant growth parameters; and
(4) irrigation water and manure application rates. RZWQM
output sensitivity to each set of input parameter groups was
determined independently to avoid interactions among
different simulation processes. Second, baseline values for
the model input parameters were selected. An experimental
data set on manure management in an eastern Colorado
corn field was used to obtain the values (Ma et al., 1998).
RZWQM was calibrated for this data set by varying crop
residue-soil organic matter inter-pool mass transfer
coefficients and evaluating their effect on crop yield. The
calibrated model successfully predicted manure effects on
corn yield, plant nitrogen (N) uptake, and nitrate (NO3-N)
leaching (Ma et al., 1998). Third, critical RZWQM output
responses were identified in order to quantify overall
model sensitivity. Three model outputs, plant N uptake,
silage yield, and NO3-N leaching beyond the root zone,
were selected because of their probable overall response to
the input parameters.

The general objectives of this study were to evaluate
the performance of RZWQM and to identify key
(sensitive) model input parameters under eastern
Colorado conditions in terms of corn production and
NO3-N leaching. Because of the complexity of RZWQM,
a secondary intent was to provide guidance towards
calibration of RZWQM and identification of potential
sources of RZWQM simulation errors.

FIELD EXPERIMENT DESCRIPTION
Input parameter baseline values for the sensitivity

analysis were obtained from a field experiment designed to
study residual effects of manure on irrigated corn
production in eastern Colorado (Ma et al., 1998). Over the
past decade, the field had a history of receiving beef cattle
manure (44.8 Mg ha–1) as fertilizer every autumn after the
harvest of silage corn. No inorganic fertilizer was applied.
The experimental plots were on a Vona sandy loam soil
(coarse loamy, mixed, mesic, Ustollic Haplargid). The
water table was approximately 8 m below the ground
surface. The field was irrigated in alternate furrows with
ditch water containing 1.3 ppm NO3-N. Each irrigation
event lasted 12 h with a total application amount of 20 cm.
The farmer irrigated infrequently—usually only four to six
times during the months of July and August.

Soil organic matter content, soil pH, and soil texture
were measured by the Colorado State University Soil,
Water and Plant Testing Laboratory. The modified Walkey
and Black method was used to measure soil organic matter
content (Allison, 1965), and soil texture was measured with
the hydrometer method (Gee and Bauder, 1986). Soil bulk
density was measured using the core method (Blake and
Hartge, 1986) with a 3.8-cm cylindrical sampler, and 33-
kPa soil water content was estimated using the ceramic
pressure plate method (Gardner, 1986). A summary of the
soil physical properties by layer is listed in table 1. Weather
data were obtained from a weather station 0.4 km
southwest of the experiment site. Dates for agricultural
management practices such as manure application,
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irrigation, tillage, and planting and harvesting were
recorded and are listed in table 2 for years 1993-1996.

The Root Zone Water Quality Model has been discussed
in detail in the literature (Ma et al., 1998; RZWQM
Development Team, 1998; Ahuja et al., 1999). The model
was developed to simulate the physical, chemical, and
biological processes in the root zone as affected by
agricultural management practices. Modeling of selected
processes is illustrated here to provide a background for the
input parameter groups chosen for the sensitivity analysis.

SATURATED HYDRAULIC CONDUCTIVITY

Soil properties (Ma et al., 1998) for the eastern
Colorado experimental data set included soil bulk density,
soil texture, and soil water content at 33 kPa. Measured
field values were used in this sensitivity analysis; however,

emphasis is placed here on RZWQM output response to
saturated hydraulic conductivity (Ksat, cm/h) because of its
importance in water and chemical movement (Singh et al.,
1996; Singh and Kanwar, 1995a,b). RZWQM estimates
Ksat from effective porosity, φe, using (Ahuja et al., 1989):

Ksat = 764.5 φe
3.29 (1)

φe = θs – θ1/3 (2)

where θs and θ1/3 are soil water content at saturation and
33 kPa suction. The range of values tested was calculated
from equations 1 and 2 using soil water contents at
saturation and 33 kPa suction, as given by Rawls et al.
(1982). Ksat baseline and testing range values are shown in
table 3. Testing ranges for Ksat and other input variables
were determined using maximum and minimum values
based on a combination of expert opinion and literature
review. LHS was used to sample Ksat values for individual
soil layers in order to identify an unusual RZWQM output
response sensitivity to a particular soil layer. Values of Ksat
were assumed to be lognormally distributed for all soil
layers (Ellerbroek et al., 1998).

Brooks-Corey input parameters were also obtained from
Rawls et al. (1982). RZWQM output response sensitivity to
these parameters was not studied for two reasons. First, a
sensitivity analysis study examining the Brooks-Corey
parameters has previously been conducted (Walker, 1996).
Second, it is extremely difficult, if not impossible, to
randomly sample these parameters without affecting the
integrity of the Brooks-Corey equations. Other soil
property-related processes such as macropore and tile
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Table 1. Soil physical properties by layer from a field experiment designed to study
residual effects of manure on irrigated corn production in eastern Colorado

Soil
Soil LayerPhysical

Property 1 2 3 4 5

Soil depth (cm) 0-30 30-60 60-90 90-120 120-150
Bulk density (g cm–3) 1.4 1.5 1.5 1.5 1.5
Organic matter (%) 1.7 0.7 0.6 0.3 0.3
Sand (%) 63 61 41 64 48
Silt (%) 15 15 28 16 28
Clay (%) 22 24 31 20 24
33 kPa water content (cm3 cm–3) 0.227 0.222 0.279 0.188 0.279
Soil classification Sandy clay loam Clay loam Sandy loam Loam

Table 2. Management practices for 1993 to 1996 from a field experiment designed to study residual effects of manure
on irrigated corn production in eastern Colorado

Management Practice Timing Method Specific Information

Planting & harvesting 15 April 1994 & 10 Sept 1994 Corn always planted with 76 cm row spacing
22 April 1995 & 15  Sept 1995 at a rate of 8000 to 8700 seeds/ha
20 April 1996 & 14 Sept 1996 Corn always harvested for silage

Manure & Fertilizer 15 October 1993 Surface broadcast No inorganic fertilizer was applied
15 October 1994 Nitrogen applied with manure at a rate of
15 October 1995 582 kg/ha

Irrigation 14, 25 June 1994 Furrow irrigation 20 cm/event
7, 17, 29 July 1994
18 Aug 1994
13 July 1995
2, 16, 31 Aug 1995
20 May 1996
29 June 1996
12, 26 July 1996
10, 25 Aug 1996

Tillage 17 Oct 1993 Moldboard plow 15 cm of effective tillage depth (same for all)
15 days before planting 1993 Field cultivator 10 cm of effective tillage depth (same for all)
2 days before planting 1993 Field cultivator
21 May 1994 Field cultivator
17 Oct 1994 Moldboard plow
15 days before planting 1994 Field cultivator
2 days before planting 1994 Field cultivator
13 June 1995 Field cultivator
2 July 1995 Field cultivator
17 Oct 1995 Moldboard plow
15 days before planting 1995 Field cultivator
2 days before planting 1995 Field cultivator
13 June 1996 Field cultivator
2 July 1996 Field cultivator
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drainage flow were not measured at the eastern Colorado
experimental site; thus RZWQM output responses for these
processes are not included in the sensitivity analysis.

ORGANIC MATTER/N CYCLING

RZWQM differentiates various organic materials
according to their physical status and chemical properties
(Ma et al., 1998; RZWQM Development Team, 1998;
Shaffer et al., 1999). A fast (FRP) and a slow residue pool
(SRP) are identified according to their composition. Three
humus pools are also distinguished based on their half-lives
in the soil: (1) a fast humus pool (FHP) with a half-life of
five years; (2) an intermediate humus pool (IHP) with a
half-life of 20 years; and (3) a slow humus pool (SHP) with
a half-life of 2000 years. Each pool is characterized with a
specific carbon/nitrogen (C/N) ratio and a first-order
decay constant. Materials from an organic matter pool may
be transferred into other pools, assimilated into microbial
biomass, or emitted as CO2 (Ma et al., 1998). During these
transformations, nitrogen is conserved and CO2 is used as
sink/source for carbon to maintain the C/N ratios of each
pool. RZWQM also simulates nitrification and
denitrification processes. A zero-order nitrification
equation and a first-order denitrification equation are
currently used.

Organic matter/N cycling in the soil system is mediated
by three types of microorganisms, namely heterotrophic
decomposers, nitrifiers, and denitrifiers. These three
microorganism pools dynamically respond to soil nutrient
contents, soil pH, soil aeration, and soil temperature.
Microbial growth rates are proportional to the rates of
reactions that they are catalyzing. Microbial death rates are
proportional to their biomass.

The decay rate of each organic matter pools is described
by (Shaffer et al., 1999):

Ri = ki f1 (T, O2, pH, Phet) Ci (3)

where Ri and Ci are the decay rate and carbon
concentration of organic matter pool i (i = FRP, SRP, FHP,
IHP, and SHP), respectively. f1 is a function of soil
temperature (T), soil aeration (O2), pH, and the population
of heterotrophic decomposers (Phet). Nitrification rate
(Rnit) is simulated by:

Rnit = knit f2 (T, O2, pH, Pnit) (4)

The denitrification rate (Rden) is expressed as:

Rden = kden f3 (T, O2, pH, Pden) CNO3
(5)

where knit and kden are nitrification and denitrification
constants, and f2 and f3 are modifiers depending on soil
temperature, soil aeration, pH, and microbial populations.
Pnit and Pden are populations of nitrifiers and denitrifiers.
CNO3

is concentration of NO3. The death rates (Di) of
microbial populations (Pi) are assumed to be first-order
kinetics:

Di = kdi f4i (T, O2, pH) Pi (6)

where kdi is the death constant for microbial population Pi
[i = het, nit, and den) and f4i is the corresponding modifier
for soil environment. In this study, 10 rate constants were
selected for sensitivity analysis: the five decay constants
(kSRP, kFRP, kFHP, kIHP, and kSHP), nitrification constant
(knit), denitrification constant (kden), and the three
microbial death constants (kdhet, kdnit, and kdden). The
baseline and testing range values of the organic matter/N
cycling parameter set are shown in table 3. The parameter
test ranges were determined by multiplying (maximum
value) and dividing (minimum value) the baseline values
by 10. Each organic matter/N cycling parameter is
assumed to be lognormally distributed.
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Table 3. Baseline values, testing ranges, and probability distributions of model input parameters selected for RZWQM sensitivity analysis

Baseline
Simulated Process Group Model Input Parameter Unit Value Testing Range
Distribution

Soil physical properties Ksat: saturated hydraulic conductivity, 1st layer: cm/h 7.449 9.5 × 10–5 to 11.3 Lognormal
2nd layer: cm/h 4.643 9.5 × 10–5 to 11.3 Lognormal
3rd layer: cm/h 1.657 3.1 × 10–3 to 10.2 Lognormal
4th layer: cm/h 7.574 8.5 × 10–2 to 47.2 Lognormal
5th layer: cm/h 1.657 7.4 × 10–3 to 25.6 Lognormal

Organic matter/N cycling knit: nitrification rate constant s/day/org. 1.0 × 10–9 0.1 × 10–9 to 10 × 10–9 Lognormal
kden: denitrification rate constant s/day/org. 1.0 × 10–13 0.1 × 10–13 to 10 × 10–13 Lognormal
kSRP: decay rate constant for the SRP s/day 1.67 × 10–7 0.167 × 10–7 to 16.7 × 10–7 Lognormal
kFRP: decay rate constant for the FRP s/day 8.14 × 10–6 0.814 × 10–6 to 81.4 × 10–6 Lognormal
kFHP: decay rate constant for the FHP s/day 2.5 × 10–7 0.25 × 10–7 to 25 × 10–7 Lognormal
kIHP: decay rate constant for the IHP s/day 5.0 × 10–8 0.5 × 10–8 to 50 × 10–8 Lognormal
kSHP: decay rate constant for the SHP s/day 4.5 × 10–10 0.45 × 10–10 to 45 × 10–10 Lognormal
kdhet: death rate constant for heterotrophs s/day 5.0 × 10–35 0.5 × 10–35 to 50 × 10–35 Lognormal
kdnit: death rate constant for nitrifiers s/day 4.77 × 10–40 0.477 × 10–40 to 47.7 × 10–40 Lognormal
kdden: death rate constant for denitrifiers s/day 3.4 × 10–33 0.34 × 10–33 to 34 × 10–33 Lognormal

Plant growth Nmax: maximum active daily N uptake rate g/plant/day 0.5 0.0 to 3.3 Normal
R1: photorespiration rate percentage 0.08 0.0 to 0.525 Normal
SLW: specific leaf weight g/LAI 9.0 0.0 to 27.3 Normal
Ap: photosynthesis reduction factor at propagules percentage 0.9 0.708 to 1.0 Normal
As: photosynthesis reduction factor at seed stage percentage 0.8 0.48 to 1.0 Normal

Irrigation water and manure W: amount of water irrigated each event cm 20 0.0 to 40 Normal
application rates M: amount of manure applied each year Mg/ha 44.8 0.0 to 89.6 Normal
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PLANT GROWTH

The generic plant growth model was developed by
Hanson (1999). It simulates both plant growth and plant
population development. Seven phenological growth
stages, dormant, germinating, emergence, four-leaf,
vegetative, reproductive, and senescence, are identified in
the model. Plants in any stage can remain alive in the
current stage, pass to the next stage, or die depending on
environmental fitness. A modified Leslie probability matrix
is used to calculate plant population development (Hanson,
1999). Nitrogen uptake by plants is passive if the amount
of uptake to the plants through water transpiration meets
plant nitrogen demands, otherwise, active plant N uptake
occurs according to the Michaelis-Menton equation
(Hanson, 1999).

Five RZWQM plant growth and N uptake parameters
were recommended by Hanson et al. (1999) for calibration:
(1) maximum active daily N uptake rate (Nmax);
(2) photorespiration rate as a percentage of daily
photosynthate (R1); (3) biomass needed to obtain a leaf
area index of 1.0, or specific leaf weight (SLW); (4) leaf
photosynthesis reduction factor at propagule stage as a
percentage of maximum daily photosynthesis rate (Ap);
and (5) leaf photosynthesis reduction factor at seed
production stage as a percentage of maximum daily
photosynthesis rate (As). Hanson et al. (1999) provides
ranges and standard errors for each of the parameters using
model calibration results from field experiments in
Colorado, Iowa, Minnesota, Nebraska, and Ohio. The
baseline and testing range values of the plant growth
parameter set assimilate the results of Ma et al. (1998) and
Hanson et al. (1999) and are listed in table 3. Each plant
growth parameter is assumed to be normally distributed.

WATER AND MANURE APPLICATION RATES

Average irrigation water and manure application rates
were used in the evaluation of RZWQM by Ma et al.
(1998). However, irrigation water and manure applications
were not uniform in the field, especially when alternative
furrow irrigation was used. In the eastern Colorado field
experiment, an average of 20 cm of water was applied
during each irrigation event. Since alternative furrow
irrigation was used, some portion of the field received no
water. Therefore, a test range of irrigation water application
variability of 0 to 40 cm with a baseline value of 20 cm
was used (table 3). Likewise, a test range for manure
application variability of 0 to 89.6 Mg ha–1 with a baseline
value of 44.8 Mg ha–1 was used (table 3). Both variables
are assumed to be normally distributed since no
measurement was conducted on the spatial distribution of
water and manure applications in the field. The assumption
of a normal distribution should have minimal effect on the
sensitivity analysis results (Fontaine et al., 1992; Haan and
Zhang, 1996).

RZWQM SENSITIVITY ANALYSIS
In this study, three RZWQM output responses, plant N

uptake, silage yield, and NO3-N leaching below the root
zone (i.e., beyond 1.5 m), were selected because of their
practical interest for agricultural production and
environmental quality. RZWQM output responses to each
group of model input parameters of saturated hydraulic

conductivity, organic matter/N cycling, plant growth, and
irrigation water and manure application rates were
quantified by linear regression analysis (Fontaine et al.,
1992; Tiscareno-Lopez et al., 1993, 1994; Gwo et al.,
1996) as:

Y = b0 + b1X1 + b2X2 + . . . + bnXn (7)

where Y is a model output, Xi is the ith model parameters,
and bi is the corresponding coefficient. A normalized
sensitivity coefficient (βi) can be defined as:

βi = bi Sxi/SY (8)

where Sxi and SY are the standard deviations of Xi and Y,
respectively. A sensitivity coefficient value of 1.0 means
that one standard deviation change in the model parameter
will lead to a standard deviation change in the model
output (Tiscareno-Lopez et al., 1993, 1994). An implication
of linear regression analysis (along with the LHS method)
is the analog to analyzing experimental data collected from
an underlying statistical distributions with due
consideration of experimental errors (Gwo et al., 1996).

Sensitivity of the selected model output responses was
analyzed individually for each group of model input
parameters, keeping the other parameter group input
variables constant. However, since we are using a relative
sensitivity coefficient that is independent of sample
distribution (Fontaine et al., 1992), sensitivity results should
be comparable across groups. LHS was used to generate
100 parameter sets each for the saturated hydraulic
conductivity, plant growth, and irrigation water and manure
application rates parameter groups; 200 parameter sets were
generated for the organic matter/N cycling parameter group.
This resulted in a total of 500 computer runs of the model.
Table 4 shows the minimum number of runs needed for a
confidence size greater than or equal to ±10% of the mean
simulated output response for a simple Monte Carlo
analysis according to Shaffer (1988). The number of
simulation runs conducted for this study was generally
much larger than needed, except for the irrigation water and
manure application rates parameter group. However, since
LHS is a much more efficient sampling technique than
traditional Monte Carlo simulation, the total number of
simulation runs should be adequate.

For each input parameter set generated using LHS,
RZWQM was initialized for the organic matter pools by
running the model for 12 years prior to the 1993-1996
actual simulation period. A 12-year initialization run was
suggested by Ma et al. (1998) to obtain steady-state
conditions for the faster soil organic pools. Model
initialization is also beneficial when conducting a sensitivity
analysis in order to obtain steady-state conditions as
affected by model input parameters only (Larocque and
Banton, 1994). Table 4 lists the sampling means, standard
deviations, and the minimum and maximum values of each
parameter generated using the LHS technique. LHS requires
inputs of mean value (µ) and standard error (σ) for each
distribution, and samples are taken between µ – 3.09σ and
µ + 3.09σ (Iman and Shortencarier, 1984). It was difficult to
obtain standard errors for some RZWQM input parameters
in this study (e.g., saturated hydraulic conductivity and
many of the parameters related to organic matter/N
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cycling). In these cases, model input parameters were
sampled from their individual distributions within the test
ranges defined in table 3.

RESULTS AND DISCUSSION
RZWQM OUTPUT RESPONSES TO SATURATED

HYDRAULIC CONDUCTIVITY

Mean saturated hydraulic conductivities (Ksat) for soil
layers 1 to 5 generated using LHS were 0.242, 0.247,
0.390, 3.468, and 1.085 cm/h (table 4), which are much
lower than the values of 7.449, 4.643, 1.657, 7.574, and
1.657 cm/h (table 3) estimated from measured bulk density
and 33 kPa water content of the soil (Ma et al., 1998).
However, the estimated values are still within the LHS
ranges. Linear regression analysis (table 5) indicates that
plant N uptake, silage yield, and NO3-N leaching are
weakly correlated to Ksat (coefficient of correlation r ≤
0.326). Corresponding sensitivity coefficients (βi) are
generally small (βi ≤ 0.224). The eastern Colorado field
experimental location may be an inadequate test of Ksat
effects on model output responses because of the low
yearly precipitation (~22 cm/year) and infrequent
irrigation events (only four to six yearly). Calculated plant
N uptake, silage yield, and NO3-N leaching sensitivity
coefficients for the average Ksat of the soil profile (all
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Table 4. Statistics for LHS generated RZWQM input parameters and general simulation results for N uptake, silage yield, and NO3-N leaching

Estimated
Maxi- Mini- Min.

Simulated Process Group Model Input Parameter Mean S.D. mum mum Runs*

Soil physical properties Ksat, 1st layer: 0.242 1.150 11.30 0.0002
2nd layer: 0.247 1.157 11.30 0.0004
3rd layer: 0.390 0.60 3.87 0.0074
4th layer: 3.468 5.037 41.60 0.131
5th layer: 1.085 2.385 21.00 0.0107

Simulated N uptake (kg N/ha) 298.187 26.578 359.00 250.00 4
Simulated silage yield (kg/ha) 25929.64 2168.78 28787.82 17612.77 3
Simulated NO3-N leaching (kg N/ha) 178.48 83.58 256.36 0.0025 85

Organic matter/N cycling knit: 1.309 × 10–9 1.063 × 10–9 6.94 × 10–9 0.115 × 10–9

kden: 1.325 × 10–13 1.167 × 10–13 10.0 × 10–13 0.146 × 10–13

kSRP: 2.191 × 10–7 1.786 × 10–7 11.5 × 10–7 0.175 × 10–7

kFRP: 10.801 × 10–6 9.523 × 10–6 81.40 × 10–6 0.998 × 10–6

kFHP: 3.307 × 10–7 2.90 × 10–7 25.00 × 10–7 0.25 × 10–7

kIHP: 6.569 × 10–8 5.421 × 10–8 36.60 × 10–8 0.706 × 10–8

kSHP: 5.971 × 10–10 5.28 × 10–10 45.00 × 10–10 0.484 × 10–10

kdhet: 6.597 × 10–35 5.614 × 10–35 45.10 × 10–35 0.708 × 10–35

kdnit: 6.319 × 10–40 5.553 × 10–40 47.7 × 10–40 0.625 × 10–40

kdden: 4.456 × 10–33 3.638 × 10–33 23.5 × 10–33 0.361 × 10–33

Simulated N uptake (kg N/ha) 310.515 14.426 334.00 198.00 1
Simulated silage yield (kg/ha) 27498.823 544.129 27897.64 22582.47 1
Simulated NO3-N leaching (kg N/ha) 239.955 37.828 324.85 71.91 10

Plant growth Nmax: 1.559 0.573 3.30 0.0547
R1: 0.197 0.103 0.446 0.001
SLW: 12.105 4.903 27.30 1.25
Ap: 0.879 0.056 1.00 0.731
As: 0.810 0.109 1.00 0.510
Simulated N uptake (kg N/ha) 264.323 80.476 371.00 43.50 37
Simulated silage yield (kg/ha) 19551.62 6758.959 30915.22 2994.28 47
Simulated NO3-N leaching (kg N/ha) 295.881 83.48 521.74 21.123 32

Irrigation water and manure W: 20.02 6.583 40.00 2.67
application rates M: 44797.29 14313.27 78920.00 9669.00

Simulated N uptake (kg N/ha) 307.49 48.34 360.67 117.00 10
Simulated silage yield (kg/ha) 26925.02 1672.29 28309.46 16550.6 2
Simulated NO3-N leaching (kg N/ha) 251.48 129.07 593.43 0.0233 102

* Number of computer runs needed for confidence size ≤ ±10% of mean simulated outputs.

Table 5. Sensitivity coefficients (βi) calculated for RZWQM output response
to perturbations in model input parameters

Model Input Plant N Silage NO3-N
Simulated Process Group Parameter Uptake Yield Leaching

Soil physical properties Ksat, 1st layer: +0.1323 +0.1573 +0.1125
2nd layer: –0.01915 +0.01716 +0.07723
3rd layer: –0.1632 –0.03096 +0.07499
4th layer: +0.2242 +0.03229 –0.1560
5th layer: +0.1275 –0.005478 –0.1006
All layers: –0.1478 +0.2987 +0.4906

r 0.326 0.164 0.241

Organic matter/N cycling knit: –0.03299 +0.009228 –0.01883
kden: –0.2293 –0.1866 –0.2338
kSRP: –0.06288 +0.09159 +0.1127
kFRP: +0.2361 +0.1698 +0.2165
kFHP: –0.1508 +0.06592 +0.07682
kIHP: +0.04404 +0.01555 +0.1532
kSHP: +0.1745 +0.02564 +0.2056
kdhet: –0.4826 –0.5502 –0.6518
kdnit: –0.05938 –0.02425 –0.02392
kdden: +0.2647 +0.1978 +0.2543

r 0.680 0.648 0.815

Plant growth Nmax: +0.07091 –0.001944 –0.07285
R1: –0.4351 –0.5144 +0.3787
SLW: –0.7333 –0.7829 +0.8316
Ap: –0.03862 –0.001877 –0.1180
As: –0.006375 +0.03824 +0.03469

r 0.854 0.936 0.926

Irrigation water and W: –0.2674 +0.004373 +0.1967
manure application M: +0.8734 +0.7053 +0.9531
rates

r 0.914 0.706 0.973
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layers, 0-150 cm) are –0.1478, +0.2987, and +0.4906,
respectively (table 5). Sensitivity coefficients for silage
yield and NO3-N leaching are higher than the sensitivity
coefficients calculated for each individual soil layer.
Therefore, RZWQM output responses appear to be more
closely related (sensitive) to the average soil profile Ksat
than to the Ksat of an individual soil layer. Plant N uptake
and silage yield output responses were less sensitive to
average Ksat than NO3-N leaching, which may reflect a
weak response of plant growth to water stresses. In
addition, plant N uptake was negatively correlated to
average Ksat. This may suggest that less N was available at
high saturated hydraulic conductivity due to leaching.

RZWQM OUTPUT RESPONSES TO ORGANIC

MATTER/N CYCLING

Organic matter/N cycling parameter mean values
generated using LHS sampling (table 4) are closer to the
baseline values (table 3) than the Ksat LHS generated
values. Table 5 shows that model output responses are least
sensitive to nitrification rate constant (knit) and death rate
of nitrifiers (kdnit) parameters, and the most sensitive to the
death rate of heterotrophs (kdhet) parameter (one standard
deviation change in kdhet results in 0.48 to 0.65 standard
deviation decrease in model output responses). Linear
regression analysis shows a moderate correlation between
all RZWQM output responses and the organic matter/N
cycling parameters (r ≥ 0.648). Furthermore, all model
output responses are negatively related to the
denitrification constant (kden) and death rate of nitrifiers
(kdnit) parameters, suggesting more N was available for
plant uptake and leaching as these parameters decrease in
value. Conversely, all RZWQM output responses are
positively related to the death rate of denitrifiers (kdden).
Silage yield and NO3-N leaching are positively related to
the five residue/humus pools decay rate constants (kSRP,
kFRP, kFHP, kIHP, and kSHP); whereas, plant N uptake
responds in an inconsistent fashion to perturbations in the
decay rate constants (table 5).

RZWQM OUTPUT RESPONSES TO PLANT GROWTH

PARAMETERS

Plant growth parameter mean values generated using
LHS sampling (table 4) are generally higher than baseline
values (table 3). Linear regression analysis in table 5 shows
a very strong correlation between all RZWQM output
responses and the plant growth parameters (r ≥ 0.854). The
specific leaf weight (SLW) is the most sensitive plant
growth input parameter for all model output responses,
followed by the photorespiration rate (R1). Higher SLW
results in a lower leaf area index, therefore lower silage
yield and plant N uptake are simulated. Increasing the
photorespiration rate causes less biomass accumulation and
lower plant N uptake to be simulated. These results agree
with previous evaluation of the RZWQM plant growth
component (Hanson et al., 1999). RZWQM output
responses are relatively insensitive to the remaining plant
growth input parameters (βi ≤ 0.118). A possible reason for
RZWQM output response insensitivity to maximum daily
nitrogen uptake (Nmax) may be due to the relatively high
values tested (baseline value of 0.5 with a test range of 0.0
to 3.3). Generally, setting Nmax equal to 0.05 in RZWQM
suffices N demand for most crops (Ma et al., 1998). Since

the photosynthesis reduction factors (Ap and As) are more
related to grain yield during the productive growth stage,
and less to plant biomass, their small effect on silage yield
would be expected.

RZWQM OUTPUT RESPONSES TO WATER/MANURE

APPLICATION RATES

Water and manure application rate mean values
generated using LHS sampling (table 4) are nearly the
same as the baseline values (table 3). The high standard
deviation of simulated silage yield and NO3-N leaching
(table 4) suggests that RZWQM is very sensitive to
changes in water and manure application rates. Linear
regression analysis shows a moderate to strong correlation
between all RZWQM output responses and water and
manure application rates (r ≥ 0.706) (table 5). Correlation
is especially high for the plant N uptake and NO3-N
leaching model output responses, however, further analysis
shows that manure application rate is the decisive
parameter responsible for the strong correlation. As
presented in table 5, sensitivity coefficients for all
RZWQM output responses were much higher for manure
application rate than for irrigation application rate, further
suggesting that RZWQM output responses are much less
sensitive to variations in water application rate. These
results agree with those reported by Martin and Watts
(1999), who evaluated RZWQM for the MSEA project.
Plant N uptake was negatively correlated to irrigation water
application rate (β = –0.2674). However, as shown by Ma
et al. (1998), a peak plant N uptake is observed as
irrigation application rate increases from 0 to 40 cm/event.

ADDITIONAL IMPLICATIONS OF SENSITIVITY ANALYSIS

RESULTS

The above sensitivity analysis results demonstrate
variability in RZWQM output responses as affected by
perturbations (uncertainty) in model input parameters and
non-uniformity in water and manure application rates. As
with other agricultural water quality models, RZWQM was
developed based on a limited understanding of the physical
system. Many processes (biological, chemical, and
physical) are simulated in a rather simplified manner. As a
result, model parameters are assumed to be constant with
due consideration of various environmental factors
(e.g., water, temperature, solar radiation, etc.). In reality,
many of the assumed parameter constants may change
spatially and temporally because of processes not
considered in the model or inability to simulate a particular
process at present. It is important to remember that linear
regression analysis can only determine overall (average)
model output sensitivity to perturbations in input
parameters within the specified testing ranges. Graphical
display may still be required to reflect the nonlinear
behavior of model output responses. Presenting sensitivity
analysis results in this manner may provide additional
practical insight into the consequences of parameter
uncertainty and confidence intervals for the selected model
output responses.

Figures 1 to 4 show cumulative probability distributions
of RZWQM-predicted (simulation years 1993 to 1996)
plant N uptake, silage yield, and NO3-N leaching for each
group of RZWQM input parameters. All the distributions
failed normal and lognormal Chi-square and Kolmolgorov-
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Smirnoff hypothesis tests. Confidence intervals (90% level)
based on probability counts are also shown in figures 1 to
4. Sensitivity to model input parameters is reflected in the
distribution shape, i.e., the narrower the distributions in
figures 1 to 4, the less sensitive RZWQM output responses
are to variations within the input parameter groups. Plant N
uptake is most sensitive to plant growth parameters that
directly relate to biomass accumulation (table 5 and fig. 3).

Silage yield is also most sensitive to plant growth
parameters (fig. 3). Based on the spatial variability of
manure and water application rates, the amount of NO3-N
leached out of the root zone ranged from 0 to 755 kg N
ha–1 (fig. 4). The worst scenario for NO3-N leaching arises
from a combination of high irrigation and manure
application rates (fig. 4, table 5).

It is interesting to compare observed experimental
results with the probability distributions in figure 4,
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Figure 1–Probability distributions of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone due to variation in saturated
hydraulic conductivity, Ksat.

Figure 2–Probability distributions of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone due to variation in organic
matter/N cycling parameters.
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assuming that experimental error was due to improper
characterization of spatial variability in water and manure
application rates. Measured silage yields for the eastern
Colorado field experiment were 25.1, 30.9, and 24.3 Mg
ha–1 for 1994, 1995, and 1996, respectively, which are
within or close to the 90% confidence interval of 24 to 30
Mg ha–1. Yields for 1994 and 1996 were closer to the mean
(25.1 Mg ha–1) than that of 1995 (fig. 4). Although the high
yield in 1995 (30.9 Mg ha–1) was probably due to an
unusually wet spring (Ma et al., 1998), this yield may also

be explained by possible bias in sampling location.
Measured plant N uptake based on silage N content was
245, 361, and 211 kg N ha–1 for 1994, 1995, and 1996,
respectively, which are within the 90% confidence interval
of 199 to 377 kg ha–1. The high N uptake in 1995 was not
accurately simulated by Ma et al. (1998), however,
sensitivity analysis results in figure 4 indicate there is a
high probability for plant uptake of more than 300 kg N
ha–1 in the manured field.

Model output responses to the most sensitive input
parameters in each group are graphically presented in
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Figure 3–Probability distributions of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone due to variation in plant
growth parameters.

Figure 4–Probability distributions of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone due to variation in water and
manure application rates.
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figures 5 to 8 to show nonlinear behavior in RZWQM. The
nonlinear response curves indicate variability resulting
from other input parameters in the group. Figure 5 shows
the model output responses for the 1993-1996 simulation
years to the average soil profile Ksat. A decreasing trend in
plant N uptake and an increase in NO3-N leaching was
simulated for increasing Ksat up to 0.01 cm h–1. Therefore,
Ksat affects N availability in the soil profile but only at very
low Ksat values. Silage yield is very weakly related to the
average Ksat, however. Figure 6 presents model output
responses to the most sensitive N cycling input parameter,
death rate of the heterotrophs, with random variation of
other nutrient parameters presented in table 4. Generally,
there is a decreasing trend in plant N uptake and NO3-N

leaching; whereas, silage yield is not sharply affected
(fig. 6). The heterotroph death rate affects N supply to the
system by limiting the number of organic matter
decomposers. Model output responses are highly correlated
to SLW (fig. 7) because of its dominant role in simulating
LAI, which is in agreement with previous studies
(Hanson et al., 1999). Manure application rate has a
dominant effect on plant N uptake, silage yield, and NO3-N
leaching (fig. 8) as anticipated simply because additional N
is added to the system as the manure application rate
increases. A plateau was observed for both plant N uptake
and silage yield, which was expected and has been
confirmed in previous field studies (Cerrato and Blackmer,
1990; Overman et al., 1994). NO3-N leaching increased
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Figure 5–Simulated responses of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone to average saturated hydraulic
conductivity, Ksat, in the soil profile.

Figure 6–Simulated responses of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone to the death rate constant for
heterotrophs, kdhet, with other organic matter/N cycling parameters
varied.
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linearly with manure application rate as plant N uptake
approached a maximum value.

SUMMARY AND CONCLUSIONS
The purpose of this study was to conduct a sensitivity

analysis for selected RZWQM input parameters. Results of
this study may be used to identify key model parameters
and confidence intervals that need to be carefully
determined due to possible parameter variability. These
results may also point out weaknesses in the model that
warrant further development; however, care should be
taken in their interpretation. For example, we did not

consider a possible suppressing effect on silage yield at
very high N concentrations, i.e., silage yield may decrease
at very high manure application rates. Similarly, manure
application may affect the pH of soil, the supply of other
micro-nutrients, and change the environment for
microorganisms. The interdependency of various soil
processes (parameters) may also add uncertainty to the
sensitivity analysis results.

In this study, we assumed lognormal distributions for
saturated hydraulic conductivity and organic matter/N
cycling input parameters, and normal distributions for plant
growth parameters and water/manure application rates.
These assumptions are arbitrary to some extent, and
depend on the definition of parameter variation. For
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Figure 7–Simulated responses of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone to specific leaf weight, SLW,
with other plant growth parameters varied.

Figure 8–Simulated responses of plant N uptake, silage yield, and
NO3-N leaching beyond the root zone to manure application rate, M,
with water irrigation rate, W, varied.
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example, saturated hydraulic conductivity (Ksat) is
generally lognormally distributed spatially in a field, but if
we consider Ksat distribution due to experimental
measurement errors, it is normally distributed. However,
parameter distribution assumptions have been shown not to
have significant effect on sensitivity analysis results (Haan
and Zhang, 1996, Fontaine et al., 1992).

As demonstrated by the calculated sensitivity
coefficients, the selected RZWQM output responses are
most responsive to manure application rate, death rate of
heterotrophs (kdden), photorespiration rate as a percentage
of daily photosynthate (R1), and specific leaf weight
(SLW). Since RZWQM output responses are not highly
correlated to the Ksat of each individual soil layer, accurate
(model) delineation between soil layers may not be critical.
Spatial variability of water irrigation has less effect on
plant N uptake, silage yield, and NO3-N leaching than
uneven distribution of manure on the field. This effect may
be even less important when lateral water flow is
considered.

Finally, the linear regression analysis does not consider
the interactions between model parameters, which is valid
only for independent input variables. However, in the case
of dependency, the interaction between parameters may be
important and the interpretation of sensitivity coefficients
should be adjusted. One example is the interaction between
water and manure application rates. As shown in figure 8,
simulated plant N uptake, silage yield, and NO3-N leaching
responded to manure application rates in distinct patterns,
although irrigation rates were varied from 0 to
40 cm/event. However, RZWQM output responses to
irrigation rate were very much scattered (data not shown)
given a simultaneously random variation in manure
application rate from 0 to 89.6 Mg ha–1; whereas, the three
output variables responded to irrigation rate in
distinguishable trends when only irrigation rates were
varied (Ma et al., 1998).
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